Exploration of Large Document Sets

Zurich University of Applied Sciences

Exploration of Large Document Sets: What is the underlying data?

- 500...1'000'000 documents
- Homogeneous or heterogeneous documents
- Arbitrary data sources, e.g. news, scientific articles, project reports etc.
- Arbitrary data formats, e.g. txt, pdf, word, OCR output etc.
- Plain text or with meta data (author, date, source, ID etc.)

Exploration of Large Document Sets: What are the potential goals?

- 1. Find documents for specific keywords/topics (search)
- 2. Find the most relevant document (search, filter)
- 3. Extract structured information (e.g. NER)
- 4. Get an overview
- 5. Find "something interesting"

Zurich University of Applied Sciences

Sample Applications for Large Document Set Exploration

Historical Analysis

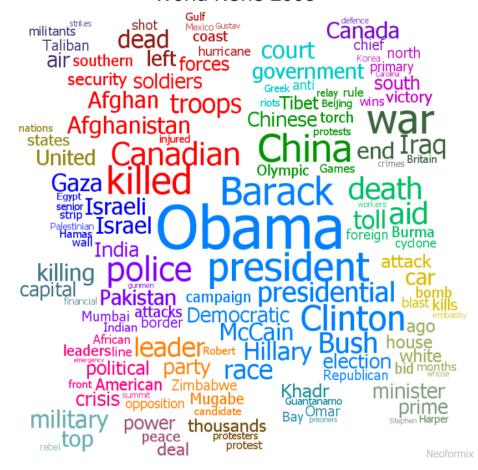
- Goal: understand development of a specific topic over time
- 500-50k news articles

Scientific Research:

- Goal: quick overview of a research field
- 1'000-50k papers for a specific topic

Callenge a Patent:

- Goal: for a given patent, find the most similar patents
- Size: 14 million patents worldwide, 1-2k after pre-filtering


Police Forensics:

- Goal: find "interesting" documents for a criminal case on a harddisk
- Size: 100k-500k docs

Keyword Extraction can find important terms in single documents or document (sub-)sets

World News 2008

Methods:

- Word Frequency
- TF-IDF
- RAKE
- Textrank

Topic Modeling can identify topics in large document sets

Zurich University

of Applied Sciences

"Genetics"	"Evolution"	"Disease"	"Computers"
human	evolution	disease	computer
genome	evolutionary	host	models
dna	species	bacteria	information
genetic	organisms	diseases	data
genes	life	resistance	computers
sequence	origin	bacterial	system
gene	biology	new	network
molecular	groups	strains	systems
sequencing	phylogenetic	control	model
map	living	infectious	parallel
information	diversity	malaria	methods
genetics	group	parasite	networks
mapping	new	parasites	software
project	two	united	new
sequences	common	tuberculosis	simulations

Methods:

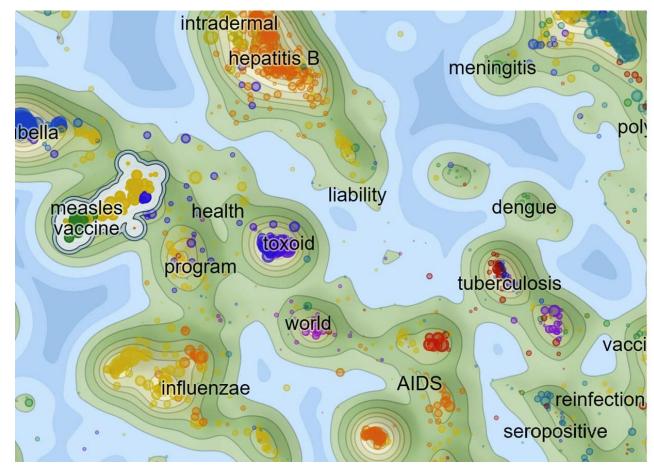
- LDA


- LSA

100-topic LDA model to 17,000 articles from the journal "Science"

Mark Cieliebak 6 ZHAW, January 2021

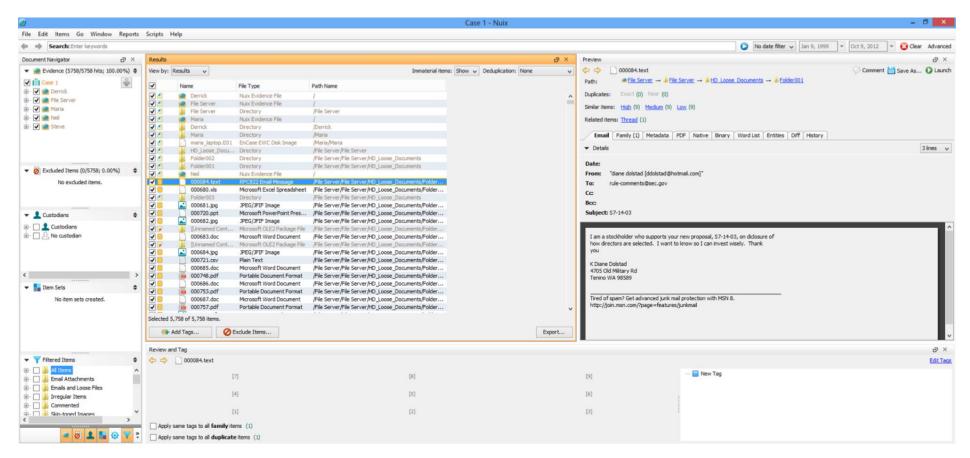
Clustering can group similar documents



Methods:

- K-Means
- Agglomerative Clustering
- DB-SCAN
- Gaussian Mixture Models

zh aw


Visualization of clustering scientific article; distance is "textual similarity" of the abstracts

https://carrotsearch.com/lingo4g

There exist tools to explore a computer hard drive interactively

https://www.nuix.com

Anomalies in large documents sets can be detected by unsupervised methods

greatest show ever mad full stop greatest show ever mad full stop greate greatest show ever mad full stop greatest show ever mad full stop greatest show ever mad full stop greatest lived let tell idea heck bear walk never heard whole years really funny beginning ten minutes people spewing gallons pink vomit recurring scenes enormous john made two one man shows rama freaks neither one shown dvd john suspenseful subtle much much disturbing

Most anomalous reviews in the IMBD test set according to CVDD

Thank You!

Mark Cieliebak

ciel@zhaw.ch

Image References

- 1. https://i.pinimg.com/474x/87/be/b8/87beb8207b44f4bb55e6757083a15794.jpg
- 2. https://www.vo.eu/de/wp-content/uploads/sites/2/2017/12/513691410-300x300.jpg
- 3. https://blog.ciat.cgiar.org/wp-content/uploads/magazines.jpg
- 4. https://cdn.unitycms.io/image/ocroped/2001,2000,1000,1000,0,0/QSrtW7o1c-g/CW-IGygkarqAp7vHAlvyw9.jpg
- 5. https://blog.ipleaders.in/wp-content/uploads/2019/04/download-2.png
- 6. https://www.packtpub.com/books/content/introduction-clustering-and-unsupervised-learning
- 7. https://neoformix.com/2009/cwc_WorldNews2008.png
- 8. https://carrotsearch.com/lingo4g/
- 9. https://www.aclweb.org/anthology/P19-1398.pdf
- 10. https://www.researchgate.net/figure/X-Ways-Forensics-after-the-processing-of-the-forensic-image_fig4_258332973
- 11. http://wallpapers-3d.ru/sstorage/53/2011/02/11002111451139523.jpg